The EBV(T)-PR valve will close in one direction and relieve pressure in the other direction. This single valve would replace a current ball valve plus a check valve plumbed around the ball valve.

Allows evaporator coil to be isolated without over pressurizing due to warm up. May also have needs in loop piping and at the rack.

The symbol ‘A’ indicates the pressure relief side of the valve. Any pressure build up on the ‘A’ side with the ball valve in the closed position can relieve to the other side of the ball valve. When used on an evaporator coil, the ‘A’ side of the valve should always be on the coil side of the valve. (See Figure 1.)

FEATURES

- Allows for positive shut-off in one direction and flow in the other direction whenever pressure differential is present. (The integrated pressure relief feature is one direction only.)
- Protects system from pressure spikes when servicing equipment.
- Welded body joint. Factory tested to ensure positive, leak-free performance. Forged brass body construction with extended copper fittings and optional access fittings.
- Full size ports for unrestricted flow on most sizes, 3/8” (10 mm) through 1-1/8” (28 mm).
- Dual Teflon seals surround the polished, brass ball to prevent leakage. Stem seal and stem washer provide the primary stem seal. Bottom load stem for safety.
- Stainless steel stop plate ensures fully open to fully closed with a 1/4 turn.
- All EBV(T)-PR ball valves may be installed in any position.

SPECIFICATIONS

- Full refrigeration service temperature range: -40°F to +325°F (-40°C to +149°C)
- Design working pressure: 1015 psig (70 bar)
- For refrigeration or air conditioning systems
- Patent Pending
DIMENSIONS

EBV(T)-PR Series - Inches

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Valve Type</th>
<th>Connection (ODF)</th>
<th>Overall Length A</th>
<th>Socket Depth B</th>
<th>Port Size C</th>
<th>D</th>
<th>Overall Height E</th>
<th>Cv</th>
</tr>
</thead>
<tbody>
<tr>
<td>502199</td>
<td>EBV-PR1030</td>
<td>3/8</td>
<td>6.50</td>
<td>0.31</td>
<td>0.50</td>
<td>1.56</td>
<td>3.08</td>
<td>4.3</td>
</tr>
<tr>
<td>502200</td>
<td>EBV-PR1040</td>
<td>1/2</td>
<td>6.50</td>
<td>0.38</td>
<td>0.50</td>
<td>1.56</td>
<td>3.08</td>
<td>7.0</td>
</tr>
<tr>
<td>502201</td>
<td>EBV-PR1050</td>
<td>5/8</td>
<td>6.50</td>
<td>0.50</td>
<td>0.50</td>
<td>1.56</td>
<td>3.08</td>
<td>13.9</td>
</tr>
<tr>
<td>502202</td>
<td>EBV-PR1060</td>
<td>3/4</td>
<td>7.25</td>
<td>0.62</td>
<td>0.75</td>
<td>1.79</td>
<td>3.59</td>
<td>21.0</td>
</tr>
<tr>
<td>502203</td>
<td>EBV-PR1070</td>
<td>7/8</td>
<td>7.25</td>
<td>0.75</td>
<td>0.75</td>
<td>1.79</td>
<td>3.59</td>
<td>30.3</td>
</tr>
<tr>
<td>502204</td>
<td>EBV-PR1090</td>
<td>1-1/8</td>
<td>8.50</td>
<td>0.91</td>
<td>1.00</td>
<td>2.13</td>
<td>4.11</td>
<td>61.3</td>
</tr>
<tr>
<td>502205</td>
<td>EBVT-PR1030*</td>
<td>3/8</td>
<td>6.50</td>
<td>0.31</td>
<td>0.50</td>
<td>1.56</td>
<td>3.08</td>
<td>4.3</td>
</tr>
<tr>
<td>502206</td>
<td>EBVT-PR1040*</td>
<td>1/2</td>
<td>6.50</td>
<td>0.38</td>
<td>0.50</td>
<td>1.56</td>
<td>3.08</td>
<td>7.0</td>
</tr>
<tr>
<td>502207</td>
<td>EBVT-PR1050*</td>
<td>5/8</td>
<td>6.50</td>
<td>0.50</td>
<td>0.50</td>
<td>1.56</td>
<td>3.08</td>
<td>13.9</td>
</tr>
<tr>
<td>502208</td>
<td>EBVT-PR1060*</td>
<td>3/4</td>
<td>7.25</td>
<td>0.62</td>
<td>0.75</td>
<td>1.79</td>
<td>3.59</td>
<td>21.0</td>
</tr>
<tr>
<td>502209</td>
<td>EBVT-PR1070*</td>
<td>7/8</td>
<td>7.25</td>
<td>0.75</td>
<td>0.75</td>
<td>1.79</td>
<td>3.59</td>
<td>30.3</td>
</tr>
<tr>
<td>502210</td>
<td>EBVT-PR1090*</td>
<td>1-1/8</td>
<td>8.50</td>
<td>0.91</td>
<td>1.00</td>
<td>2.13</td>
<td>4.11</td>
<td>61.3</td>
</tr>
</tbody>
</table>

*With access fitting.

Figure 2

NOMENCLATURE

Inches - Example: EBVT-PR1030

<table>
<thead>
<tr>
<th>EBV</th>
<th>T</th>
<th>PR</th>
<th>Series:</th>
<th>Fitting Size:</th>
<th>Fitting Configuration:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 = Full Port</td>
<td>(In eighths of an inch)</td>
<td>0 = ODF x ODF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 = Reduced Port</td>
<td>ie: 03 = 3/8"</td>
<td></td>
</tr>
</tbody>
</table>

Valve Type

- EBV

Access Fitting

- T

Pressure Relief

- PR
INSTALLATION

Brazing Instructions
1. DO NOT DISASSEMBLE.
2. WRAP THE BODY OF THE VALVE WITH A WET RAG (to dissipate heat; overheating causes damage).
3. Bleed dry nitrogen or CO₂ through the valve while brazing.
4. Use flux with silver brazing alloys.
5. Flux not required with phosphor copper alloys, on copper to copper joints, but flux is recommended for deeper penetration and more uniform results with all alloys.
6. Use large enough torch to rapidly heat joint to brazing temperature. Direct flame away from existing copper to brass joints.
7. Quench to reduce heat spread after brazing.

OPERATION NOTES
1. Remove seal cap. CAUTION: Pressure may be under seal cap, remove slowly.
2. Rotate stem using adjustable wrench. Turn 90° against the mechanical stops. Align open arrow with refrigerant line for non-directional flow. Turn clockwise to close; counterclockwise to open.
3. This valve contains mechanical stops. DO NOT USE EXCESSIVE FORCE AGAINST STOPS OR PERMANENT DAMAGE MAY OCCUR.
4. Install seal cap.

For use with CFC, HFC, and HCFC refrigerants listed in CAN/CSA B52 and ANSI/ASHRAE 15 Sec. 9.2 where the saturation vapor pressure at 125°F (52°C) (high side) and 80°F (27°C) (low side) is less than the maximum design working pressure. After charging, mark unit with refrigerant type and oil type.

NOTE: WARRANTY IS VOID IF THESE INSTRUCTIONS ARE NOT FOLLOWED.