EBV Series (Welded) EBVT Series (Welded with Access Fitting)

- Roboticd welded body joint. 100% factory tested to ensure positive, leak-free performance. Forged brass body construction with extended copper fittings and optional access fittings.
- Full size ports for unrestricted flow on most sizes (1/4” through 3-1/8”)
- Dual Teflon seals surround the polished, brass ball with a secondary seal to prevent leakage due to foreign material. Dual Teflon stem seals with internal packing nut for the primary seal; no synthetic “O” rings.
- Fully open to fully closed with a 1/4 turn. Positive movement ensured with internal, forged mechanical stops. No need to remove the seal cap to open or close the valve.
- Ball internal relief port design ensures positive shut-off in either flow direction...even during system evacuation.
- All EBV(T) ball valves are non-directional and may be installed in any position.
- Full refrigeration service temperature range: -40°F to +325°F (-40°C to +149°C).
- Design working pressure: 700 psig.
- The new EBV(T) ball valves are suitable for use with R-11, R-12, R-22, R-123, R-125, R-134a, R-236Fa, R-402A, R-402B, R-404A, R-407C, R-410A, R-500, R-502, R-507 and RS-44.

Nomenclature

Example

EBVT-1030

<table>
<thead>
<tr>
<th>EBV</th>
<th>T</th>
<th>-</th>
<th>1</th>
<th>03</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve Type Access Fitting (Optional)</td>
<td>Series: 1 = Full Port 2 = Reduced port</td>
<td>Fitting Size: (In eighths of an inch) 03 = 3/8"</td>
<td>Fitting Configuration: 0 = ODF x ODF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EBV Series

Seal Cap
Exclusive Seal Cap design permits operation of valve without removal. Markings on cap top designates at-a-glance open or closed ball position.
Brazing Instructions

1. DO NOT DISASSEMBLE.
2. WRAP THE BODY OF THE VALVE WITH A WET RAG (to dissipate heat- overheating causes damage).
3. Bleed dry nitrogen or CO₂ through the valve while brazing (to reduce carbon formation internally).
4. Use flux with silver brazing alloys, flow temperature 1100°F/1300°F (593°C/704°C).
5. Flux not required with phoscopper alloys, flow temperature 1300°F/1500°F (704°C/815°C), on copper to copper joints, but flux is recommended for deeper penetration and more uniform results with all alloys.
6. Use large enough torch to rapidly heat joint to brazing temperature. Direct flame away from existing copper to brass joints.
7. Quench to reduce heat spread after brazing.

Operating Notes

1. Rotate flats on swivel type seal cap using adjustable wrench. Turn 90° against the mechanical stops. Align open arrow with refrigerant line for non-directional flow. Turn clock-wise to close; counter-clock-wise to open.
2. This valve contains mechanical stops. DO NOT USE EXCESSIVE FORCE AGAINST STOPS OR PERMANENT DAMAGE MAY OCCUR.

Notice: DO NOT DISASSEMBLE VALVE FOR ANY REASON.
For use with CFC, HFC, and HCFC refrigerants listed in CAN/CSA B52 and ANSI/ASHRAE 15 Sec. 9.2 where the saturation vapor pressure at 125°F (high side) and 80°F (low side) is less than the maximum design working pressure. After charging, mark unit with refrigerant type and oil type.

NOTE: WARRANTY IS VOID IF THESE INSTRUCTIONS ARE NOT FOLLOWED.